哈佛大学研究了大型语言模型在回答晦涩难懂和有争议问题时产生「幻觉」的原因,发现模型输出的准确性高度依赖于训练数据的质量和数量。研究结果指出,大模型在处理有广泛共识的问题时表现较好,但在面对争议性或信息不足的主题时则容易产生误导性的回答。
I was going to write this piece weeks ago, following the conference hosted by Sheffield Business School on the theme of ...
在人工智能快速发展的今天,大型语言模型(LLMs)如ChatGPT正逐渐渗透我们的生活。最近,哈佛大学发布的一项研究深度揭示了这些模型在回答复杂和有争议问题时所表现出的「幻觉」现象。这一现象引发了广泛关注,尤其是在我们越来越依赖这些智能系统获取信息的时代。这项研究指出,尽管这些大模型在处理普遍共识问题时表现出色,但在面对模糊或有争议的主题时,它们的准确性却大打折扣,继而带来了潜在的误导风险。 研究 ...
Recent work in social epistemology has drawn attention to various problematic social epistemic phenomena that are common within online networks. Nguyen (2020) argues that it is important to ...
近日,哈佛大学发布了一份引人深思的研究报告,探讨了大型语言模型(LLM)在回答复杂和有争议问题时所产生的“幻觉”现象。研究发现,LLM的输出准确性受限于训练数据的质量和数量,尤其是在面临缺乏共识或信息不足的主题时,其表现尤为不理想。研究指出,大语言模型在处理有共识的问题时表现较好,但面对争议性主题时容易产生误导性回答,从而引发对AI系统的信任危机。
近日,哈佛大学发布了一项重要研究,深入探讨大型语言模型(LLM)在处理复杂和有争议问题时所产生的幻觉现象。这份报告强调,大模型的输出不仅依赖于训练数据的质量和数量,更反映了互联网作为集体智慧的“众包”机制。研究表明,当面对广泛共识的话题时,大模型能够稳定地给出准确回答;然而在信息不足或存在争议的情况下,模型则更容易产生误导性回应。
在《大卫·科波菲尔》中,科波菲尔与米考伯先生重逢时,一阵怪异的熟悉感涌上心头,让他浮想联翩:"我们都有过这样的感觉,它不时涌上来:我们所说的话已经被说过,所做的事已经被做过,在很久以前我们正是这样被同样的面庞、物件和环境包围着;岁月黯淡,但我们精准地 ...
Your Artstor image groups were copied to Workspace. The Artstor website will be retired on Aug 1st. The International Journal of Information... This conceptual research examines epistemic injustices ...
The volume brings together work across diverse printed images, objects, and materials produced c.1500-1700, as well as well as works in the ambit of early modern print culture, to reframe a ...
At BIO this week, Boston-based tech company Epistemic AI officially launched its own entry into the embryonic category, EpistemicGPT, with the promise to allow researchers to “interact with ...
"Kids will believe anything." That statement may often be said humorously, but the credulous nature of children can provide ...
Oh, flood the zone. The phrase itself is originally an American football jargon. Literally, it means putting a lot of people ...